Pozičný vektor A má karteziánske súradnice (20,30,50). Vektor polohy B má karteziánske súradnice (10,40,90). Aké sú súradnice vektora polohy A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
Ako konvertujem r = 3 + 3sec (theta) na karteziánsku rovnicu?
X ^ 2 + y ^ 2 = (9x ^ 2) / (x-3) ^ 2 Viacnásobne všetky výrazy rcostheta, pretože costheta * sectheta = 1 r ^ 2costheta = 3rcostheta + 3r rcostheta = xr = sqrt (x ^ 2 + y ^ 2) xsqrt (x ^ 2 + y ^ 2) = 3x + 3sqrt (x ^ 2 + y ^ 2) sqrt (x ^ 2 + y ^ 2) (x-3) = 3x sqrt (x ^ 2 + y ^ 2) = (3x) / (x-3) x ^ 2 + y ^ 2 = (9x ^ 2) / (x-3) ^ 2
Ako konvertujete r = 3theta - tan theta na karteziánsku formu?
X² + y² = (3tan ^ -1 (y / x) - y / x) ²; x> 0, y> 0 Pozrite si prosím vysvetlenie pre ostatné dve rovnice r = 3theta - tan (theta) Náhradník sqrt (x² + y²) pre r: sqrt (x² + y²) = 3theta - tan (theta) Obidve strany : x² + y² = (3theta - tan (theta)) ² Náhradník y / x pre tan (theta): x² + y² = (3theta - y / x) ²; x! = 0 Nahradiť tan ^ -1 (y / x) pre theta. POZNÁMKA: Musíme upraviť pre theta vrátenú inverznou tangenciálnou funkciou založenou na kvadrante: Prvý kvadrant: x² + y² = (3tan