Pomer jednej strany trojuholníka ABC k zodpovedajúcej strane podobného trojuholníkového DEF je 3: 5. Ak je obvod trojuholníka DEF 48 palcov, aký je obvod trojuholníka ABC?
"Obvod" trojuholníka ABC = 28.8 Keďže trojuholník ABC ~ trojuholník DEF potom ak ("strana" ABC) / ("zodpovedajúca strana" DEF) = 3/5 farby (biela) ("XXX") rArr ("obvod "ABC) / (" obvod "DEF) = 3/5 a pretože" obvod "DEF = 48 máme farbu (biela) (" XXX ") (" obvod "ABC) / 48 = 3/5 rArrcolor ( biela) ("XXX") "obvod" ABC = (3xx48) /5=144/5=28.8
Trojuholník A má plochu 12 a dve strany s dĺžkami 3 a 8. Trojuholník B je podobný trojuholníku A a má stranu dĺžky 9. Aké sú maximálne a minimálne možné plochy trojuholníka B?
Maximálna možná plocha trojuholníka B = 108 Minimálna možná plocha trojuholníka B = 15,1875 Delta s A a B sú podobné. Ak chcete získať maximálnu plochu Delta B, strana 9 Delta B by mala zodpovedať strane 3 Delta A. Strany sú v pomere 9: 3 Preto budú oblasti v pomere 9 ^ 2: 3 ^ 2 = 81: 9 Maximálna plocha trojuholníka B = (12 * 81) / 9 = 108 Podobne ako minimálna plocha, strana 8 Delta A bude zodpovedať strane 9 Delta B. Strany sú v pomere 9: 8 a plochy 81: 64 Minimálna plocha Delta B = (12 * 81) / 64 = 15,1875
Preukázať nasledujúce vyhlásenie. Nech ABC je akýkoľvek pravouhlý trojuholník, pravý uhol v bode C. Nadmorská výška nakreslená od C po preponku rozdeľuje trojuholník na dva pravé trojuholníky, ktoré sú si navzájom podobné a na pôvodný trojuholník?
Pozri nižšie. Podľa otázky, DeltaABC je pravouhlý trojuholník s / _C = 90 ^ @, a CD je nadmorská výška pre hypotézu AB. Dôkaz: Predpokladajme, že / _ABC = x ^ @. Takže uholBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Teraz, CD kolmá AB. Takže uholBDC = uholADC = 90 ^ @. V DeltaCBD, uholBCD = 180 ^ @ - uholBDC - uholCBD = 180 ^ @ 90 ^ - x ^ = (90 -x) ^ @ Podobne uholACD = x ^ @. Teraz, v DeltaBCD a DeltaACD, uhol CBD = uhol ACD a uhol BDC = uholADC. Takže podľa AA kritérií podobnosti, DeltaBCD ~ DeltaACD. Podobne môžeme nájsť DeltaBCD ~ = DeltaABC. Z toho, DeltaACD ~ = Delt