odpoveď:
Jedným z možných riešení je
vysvetlenie:
Môžeme ho zapísať do jeho faktúrovaného formulára:
Ako som už predtým povedal, používam akékoľvek
Korene kvadratickej rovnice 2x ^ 2-4x + 5 = 0 sú alfa (a) a beta (b). (a) Ukážte, že 2a ^ 3 = 3a-10 (b) Nájdite kvadratickú rovnicu s koreňmi 2a / b a 2b / a?
Pozri nižšie. Najprv nájdite korene: 2x ^ 2-4x + 5 = 0 Pomocou kvadratického vzorca: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5)) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2sqrt (6)) / 4 = (2 + -qq (6)) / 2 alfa = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2 a) 2a ^ 3 = 3a-102 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2 ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 (2 + isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6)) / 8 = 2 * (- 28 + 6isqrt (6)) / 8 farieb (modrá) (= (- 14 + 3sqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2color (modrá) (= (- 14 + 3sqrt (6)) / 2)
Čo je kvadratická rovnica s koreňmi sqrt 7 a - sqrt 7?
X ^ 2 = 7 sqrt7 a -sqrt7 Krok za krokom! x = sqrt7 a x = -sqrt7 x -sqrt7 = 0 a x + sqrt7 = 0 (x - sqrt7) (x + sqrt7) = 0 x ^ 2 + xsqrt7 -xsqrt7 - 7 = 0 x ^ 2 + 0 - 7 = 0 x ^ 2 - 7 = 0 x ^ 2 = 7 -> "Rovnica" Dôkaz .. x ^ 2 = 7 x = + -sqrt7 x = + sqrt7 alebo -sqrt 7
Ktoré vyhlásenie najlepšie vystihuje rovnicu (x + 5) 2 + 4 (x + 5) + 12 = 0? Rovnica je kvadratická vo forme, pretože ju možno prepísať ako kvadratickú rovnicu s u substitúciou u = (x + 5). Rovnica je kvadratická vo forme, pretože keď je rozšírená,
Ako je vysvetlené nižšie, u-substitúcia ho bude popisovať ako kvadratickú u. Pre kvadratické v x, jeho expanzia bude mať najvyššiu moc x ako 2, najlepšie to opíšeme ako kvadratické v x.