odpoveď:
Orthocenter G je bod
vysvetlenie:
Obrázok nižšie znázorňuje daný trojuholník a súvisiace výšky (zelené čiary) z každého rohu. Orthocenter trojuholníka je bod G.
Orthocentre trojuholníka je bod, kde sa stretávajú tri nadmorské výšky.
Musíte nájsť rovnicu kolmých čiar, ktoré prechádzajú cez dva aspoň vrcholy trojuholníka.
Najprv určte rovnicu každej zo strán trojuholníka:
Z A (9,7) a B (2,9) je rovnica
Z B (2,9) a C (5,4) je rovnica
Z C (5,4) a A (9,7) je rovnica
Po druhé, musíte určiť rovnice kolmých čiar, ktoré prechádzajú každým vrcholom:
Pre AB cez C to máme
Pre AC cez B to máme
Teraz bod G je priesečník výšok, preto musíme vyriešiť systém dvoch rovníc
Preto roztok poskytuje súradnice ortocentra G
Pomer jednej strany trojuholníka ABC k zodpovedajúcej strane podobného trojuholníkového DEF je 3: 5. Ak je obvod trojuholníka DEF 48 palcov, aký je obvod trojuholníka ABC?
"Obvod" trojuholníka ABC = 28.8 Keďže trojuholník ABC ~ trojuholník DEF potom ak ("strana" ABC) / ("zodpovedajúca strana" DEF) = 3/5 farby (biela) ("XXX") rArr ("obvod "ABC) / (" obvod "DEF) = 3/5 a pretože" obvod "DEF = 48 máme farbu (biela) (" XXX ") (" obvod "ABC) / 48 = 3/5 rArrcolor ( biela) ("XXX") "obvod" ABC = (3xx48) /5=144/5=28.8
Trojuholník A má plochu 12 a dve strany s dĺžkami 3 a 8. Trojuholník B je podobný trojuholníku A a má stranu dĺžky 9. Aké sú maximálne a minimálne možné plochy trojuholníka B?
Maximálna možná plocha trojuholníka B = 108 Minimálna možná plocha trojuholníka B = 15,1875 Delta s A a B sú podobné. Ak chcete získať maximálnu plochu Delta B, strana 9 Delta B by mala zodpovedať strane 3 Delta A. Strany sú v pomere 9: 3 Preto budú oblasti v pomere 9 ^ 2: 3 ^ 2 = 81: 9 Maximálna plocha trojuholníka B = (12 * 81) / 9 = 108 Podobne ako minimálna plocha, strana 8 Delta A bude zodpovedať strane 9 Delta B. Strany sú v pomere 9: 8 a plochy 81: 64 Minimálna plocha Delta B = (12 * 81) / 64 = 15,1875
Trojuholník A má plochu 12 a dve strany s dĺžkami 3 a 8. Trojuholník B je podobný trojuholníku A a má stranu dĺžky 15. Aké sú maximálne a minimálne možné plochy trojuholníka B?
Maximálna možná plocha trojuholníka B je 300 sq.unit Minimálna možná plocha trojuholníka B je 36,99 sq.unit Plocha trojuholníka A je a_A = 12 Uhol medzi stranami x = 8 a z = 3 je (x * z * sin Y) / 2 = a_A alebo (8 * 3 * sin Y) / 2 = 12:. sin Y = 1:. / _Y = sin ^ -1 (1) = 90 ^ 0 Preto, uhol medzi stranami x = 8 a z = 3 je 90 ^ 0 Strana y = sqrt (8 ^ 2 + 3 ^ 2) = sqrt 73. Pre maximálne plocha v trojuholníku B Strana z_1 = 15 zodpovedá najnižšej strane z = 3 Potom x_1 = 15/3 * 8 = 40 a y_1 = 15/3 * sqrt 73 = 5 sqrt 73 Maximálna možná plocha bude (x_1 * z_1) / 2 = (40