Základňa lichobežníka je 10 jednotiek a 16 jednotiek a jeho rozloha je 117 štvorcových jednotiek. Aká je výška tohto lichobežníka?
Výška lichobežníka je 9. Plocha A lichobežníka so základňami b_1 a b_2 a výška h je daná A = (b_1 + b_2) / 2h Riešenie h, máme h = (2A) / (b_1 + b_2) Zadanie uvedených hodnôt nám dáva h = (2 * 117) / (10 + 16) = 234/26 = 9
Dva paralelné akordy kruhu s dĺžkami 8 a 10 slúžia ako základňa lichobežníka zapísaného v kruhu. Ak je dĺžka polomeru kruhu 12, čo je najväčšia možná oblasť takého opísaného lichobežníka?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 Zvážte obr. 1 a 2 Schematicky by sme mohli vložiť rovnobežník ABCD do kruhu a pod podmienkou, že strany AB a CD sú akordy kruhov, spôsobom podľa obrázku 1 alebo obrázku 2. Podmienka, že strany AB a CD musia byť akordy kruhu znamenajú, že vpisovaný lichobežník musí byť rovnoramenný, pretože uhlopriečky lichobežníka (AC a CD) sú rovnaké, pretože klobúk BD = B klobúk AC = B hatD C = čiapka CD a čiara kolmá na AB a CD prechádzajúce cez stred E rozdeľuje tieto akordy (to znamená, že AF =
Zobraziť oblasť lichobežníka je A_T = 1/2 (B + b) xxh kde B = "Veľká základňa", b = "je malá základňa" a h = "nadmorská výška"?
Pozri nižšie. Prosím, pozrite sa na Ukážte, že oblasť trojuholníka je A_Delta = 1/2 bxxh kde b je základňa a h výška ... Pripojiť BD vo vyššie uvedenom diagrame.Teraz oblasť trojuholníka ABD bude 1 / 2xxBxxh a oblasť trojuholníka BCD bude 1 / 2xxbxxh Pridanie dvoch oblastí trepezoid A_T = 1 / 2xxBxxh + 1 / 2xxbxxh alebo = 1 / 2xx (B + b) xxh