odpoveď:
vysvetlenie:
Obdobie pre sin kt a cos kt je
Takže jednotlivé obdobia pre
ako
= f (t).
Čo je orbitálne obdobie Zeme a rotačné obdobie?
Zem obieha okolo Slnka za 365,242 dní a robí sa vlastnou rotáciou počas 23 hodín 56 minút a 4 sekúnd. Obežná doba Zeme sa nazýva rok. Obdobie rotácie sa nazýva deň. Solárny deň je 24 hodín, ale Zem sa každý deň pohybuje okolo Slnka.
Dôkaz: - sin (7 theta) + sin (5 theta) / sin (7 theta) -sín (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2sin ((7x-5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Obdobie satelitu pohybujúceho sa veľmi blízko povrchu Zeme s polomerom R je 84 minút. aké bude obdobie toho istého satelitu, ak sa odoberie vo vzdialenosti 3R od povrchu zeme?
A. 84 min Keplerov tretí zákon uvádza, že hranica periódy priamo súvisí s polomerom kocky: T ^ 2 = (4π ^ 2) / (GM) R ^ 3 kde T je perióda, G je univerzálna gravitačná konštanta, M je hmotnosť zeme (v tomto prípade) a R je vzdialenosť od stredu dvoch telies. Z toho môžeme získať rovnicu pre obdobie: T = 2pisqrt (R ^ 3 / (GM)) Zdá sa, že ak je polomer trojnásobný (3R), potom by sa T zvýšilo o faktor sqrt (3 ^ 3) Vzdialenosť sq sa však musí merať od stredu telies. Problém uvádza, že satelit letí veľmi blízko povrchu zeme (