Čo je doména a rozsah f (x) = sqrt (4-3x) + 2?

Čo je doména a rozsah f (x) = sqrt (4-3x) + 2?
Anonim

Doména x: # V #R, 3x#<=#4

Rozsah y: # V #R, y#>=#2

Doména by bola všetky reálne čísla také, že 4-3x#>=#0 Alebo tak 3x #<=#4, to znamená x#<=# #4/3#, Je to preto, že množstvo pod radikálnym znamienkom nemôže byť žiadne záporné číslo.

Pre rozsah, vyriešte výraz pre x.

y-2 = #sqrt (4-3x) # alebo

4-3x = # (Y-2) ^ 2 #, Or

y-2 = #sqrt (4-3x) #

Vzhľadom k tomu, 4-3x musí byť #> = 0, y-2> = #0

Rozsah by teda bol y;# V # R, y#>=#2