
odpoveď:
0,39 m
vysvetlenie:
Pretože dva reproduktory sú vypnuté
Rovnica
Nakoniec musíme rozdeliť hodnotu vlnovej dĺžky o dve, pretože ich chceme posunúť na polovicu cyklu.
Minimálna mzda v roku 2003 bola 5,15 USD, čo bolo o viac ako minimálna mzda v roku 1996, ako napíšete výraz minimálnej mzdy v roku 1996?

Minimálnu mzdu v roku 1996 možno vyjadriť ako 5,50 USD - w Problém uvádza, že minimálna mzda v roku 1996 bola nižšia ako v roku 2003. O koľko menej? Problém špecifikuje, že to bolo menej dolárov. Takže môžete prísť s výrazom, ktorý to ukáže. 2003. , , , , , , , , , , , , $ 5.50 minimálnej mzdy v roku 2003 w menej ako to. , , ($ 5,50 - w) larr minimálna mzda v roku 1996 Takže odpoveď je Minimálna mzda v roku 1996 môže byť napísaná ako ($ 5,50 - w)
Jednotná tyč s hmotnosťou m a dĺžkou l rotuje v horizontálnej rovine s uhlovou rýchlosťou omega okolo vertikálnej osi prechádzajúcej cez jeden koniec. Napätie v tyči vo vzdialenosti x od osi je?

Berúc do úvahy malú časť dr v tyčke vo vzdialenosti r od osi tyče. Takže hmotnosť tejto časti bude dm = m / l dr (ako sa uvádza jednotná tyč) Teraz napätie na tejto časti bude na ňu odstredivá sila, tj dT = -dm omega ^ 2r (pretože napätie je nasmerované ďaleko od centra, zatiaľ čo r sa počíta smerom do stredu, ak ho vyriešite vzhľadom na strednú silu, potom sila bude pozitívna, ale limit sa bude počítať od r do l) alebo dT = -m / l dr omega ^ 2r Takže, int_0 ^ T dT = -m / l omega ^ 2 int_l ^ xrdr (ako pri r = l, T = 0) So, T = - (momega ^ 2) / (2l) (x ^ 2-l ^
Aká by bola vzdialenosť medzi dvomi mestami, ak je mapa nakreslená do mierky 1: 100, 000 a vzdialenosť medzi 2 mestami je 2 km?

V metroch a 1000 metroch je to 100 cm na kilometer, takže mierka 1: 100 000 je mierka 1 cm: 1 km. Vzdialenosť na mape medzi dvoma mestami vzdialenými od seba 2 km by mala byť 2 cm.