odpoveď:
vysvetlenie:
Avšak,
Dve nabité častice umiestnené na (3,5, 5) a ( 2, 1,5) majú náboje q_1 = 3 uC a q_2 = -4 uC. Nájdite a) veľkosť a smer elektrostatickej sily na q2? Nájdite tretí náboj q_3 = 4 uC tak, aby čistá sila na q_2 bola nula?
Q_3 je potrebné umiestniť v bode P_3 (-8,34, 2,65) asi 6,45 cm od q_2 oproti atraktívnej línii Force od q_1 do q_2. Veľkosť sily je | F_ (12) | = | F_ (23) | = 35 N Fyzika: Je zrejmé, že q_2 bude priťahovaná smerom k q_1 so silou, F_e = k (| q_1 || q_2 |) / r ^ 2 kde k = 8.99xx10 ^ 9 Nm ^ 2 / C ^ 2; q_1 = 3muC; q_2 = -4muC Takže musíme vypočítať r ^ 2, použijeme vzorec vzdialenosti: r = sqrt ((x_2- x_1) ^ 2 + (y_2-y_1) ^ 2) r = sqrt ((- 2,0- 3,5) ^ 2 + (1,5-.5) ^ 2) = 5.59cm = 5.59xx10 ^ -2 m F_e = 8.99xx10 ^ 9 Ncancel (m ^ 2) / zrušiť (C ^ 2) ((3xx10 ^ -6 * 4xx10 ^ 6 ) zrušiť (C ^ 2)) /
'L sa mení spoločne ako druhá odmocnina b, a L = 72, keď a = 8 a b = 9. Nájdite L, keď a = 1/2 a b = 36? Y sa mení spoločne ako kocka x a druhá odmocnina w a Y = 128, keď x = 2 a w = 16. Nájdite Y, keď x = 1/2 a w = 64?
L = 9 "a" y = 4> "počiatočné vyhlásenie je" Lpropasqrtb "pre konverziu na rovnicu vynásobenú k konštantou" "variácie" rArrL = kasqrtb ", ak chcete nájsť k použiť zadané podmienky" L = 72 ", keď "a = 8" a "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" rovnica je "farba (červená) (bar (ul (| farba (biela) ( 2/2) farba (čierna) (L = 3asqrtb) farba (biela) (2/2) |)) "keď" a = 1/2 "a" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 farba (modrá) "----
V prípade, že OAB je priamka, uveďte hodnotu p a nájdite jednotkový vektor v smere vec (OA)?
I. p = 2 klobúk (vec (OA)) = ((2 / sqrt6), (1 / sqrt6), (1 / sqrt6)) = 2 / sqrt6i + 1 / sqrt6j + 1 / sqrt6k ii. p = 0 alebo 3 iii. vec (OC) = ((7), (3), (4)) = 7i + 3j + 4k i. Vieme, že ((p), (1), (1)) leží v tej istej rovine ako ((4), (2), (p)). Jedna vec, ktorú si treba všimnúť, je to, že druhé číslo v vec (OB) je dvojnásobok toho, čo má vec (OA), takže vec (OB) = 2vec (OA) ((2p), (2), (2)) = ((4 ), (2), (p)) 2p = 4 p = 2 2 = p Pre jednotkový vektor potrebujeme veľkosť 1, alebo vec (OA) / abs (vec (OA)). abs (vec (OA)) = sqrt (2 ^ 2 + 1 + 1) = sqrt6 klobúk (vec (OA)) = 1