odpoveď:
Naše strany sú
vysvetlenie:
Môžeme začať vytvorením rovnice, ktorá môže reprezentovať informácie, ktoré máme. Vieme, že celkový obvod je
Naša rovnica vyzerá takto:
Ak to pripojíme pre každú stranu, dostaneme
Dĺžka každej nohy rovnoramenného trojuholníka je o 3 km dlhšia ako základňa. Obvod trojuholníka je 24 km. Ako zistíte dĺžku každej strany?
6-9-9 Nech x je dĺžka základne => x + 3 = dĺžka nôh x + x + 3 + x + 3 = 24 => 3x + 6 = 24 => 3x = 18 => x = 6 => x + 3 = 9
Dĺžka základne rovnoramenného trojuholníka je o 4 palce menšia ako dĺžka jednej z dvoch rovnakých strán trojuholníkov. Ak je obvod 32, aké sú dĺžky každej z troch strán trojuholníka?
Strany sú 8, 12 a 12. Môžeme začať vytvorením rovnice, ktorá môže reprezentovať informácie, ktoré máme. Vieme, že celkový obvod je 32 palcov. Každú stranu môžeme reprezentovať zátvorkami. Pretože poznáme iné 2 strany okrem základne sú rovnaké, môžeme to využiť v náš prospech. Naša rovnica vyzerá takto: (x-4) + (x) + (x) = 32. Môžeme to povedať, pretože základňa je o 4 menej ako ostatné dve strany, x. Keď túto rovnicu vyriešime, dostaneme x = 12. Ak to pripojíme pre každú stranu, dostaneme 8, 12
Jedna noha pravouhlého trojuholníka je o 8 milimetrov kratšia ako dlhšia noha a prepona je o 8 milimetrov dlhšia ako dlhšia noha. Ako zistíte dĺžky trojuholníka?
24 mm, 32 mm a 40 mm Zavolajte x krátka noha Zavolajte y dlhú nohu Zavolajte h hypotézu Dostávame tieto rovnice x = y - 8 h = y + 8. Použite Pythagorovu vetu: h ^ 2 = x ^ 2 + y ^ 2 (y + 8) ^ 2 = y ^ 2 + (y - 8) ^ 2 Vývoj: y ^ 2 + 16y + 64 = y ^ 2 + y ^ 2 - 16y + 64 y ^ 2 - 32y = 0 y (y - 32) = 0 -> y = 32 mm x = 32 - 8 = 24 mm h = 32 + 8 = 40 mm Kontrola: (40) ^ 2 = (24) ^ 2 + (32) ^ 2. OK.