odpoveď:
198 a 200
vysvetlenie:
Nech sú dve celé čísla 2n a 2n + 2
Súčet týchto hodnôt je 4n +2
Ak to nemôže byť viac ako 400
potom
Keďže n je celé číslo, najväčšie číslo n môže byť 99
Dve po sebe idúce párne čísla sú 2x99, 198 a 200.
Alebo jednoducho povedať, že polovica z 400 je 200, takže je väčšia z dvoch po sebe idúcich párnych čísiel a druhá je jedna pred, 198.
Produkt dvoch po sebe idúcich celých čísel je 24. Nájdite dve celé čísla. Odpoveď vo forme párových bodov s najnižšou z dvoch celých čísel ako prvý. Odpoveď?
Dve po sebe idúce celé čísla: (4,6) alebo (-6, -4) Nech, farba (červená) (n a n-2 sú dve po sebe idúce celé čísla, kde farba (červená) (n inZZ Produkt n a n-2 je 24, tj n (n-2) = 24 => n ^ 2-2n-24 = 0 Teraz, [(-6) + 4 = -2 a (-6) xx4 = -24]: .n 2-6n + 4n-24 = 0: n (n-6) +4 (n-6) = 0: (n-6) (n + 4) = 0: n-6 = 0 alebo n + 4 = 0 ... až [n inZZ] => farba (červená) (n = 6 alebo n = -4 (i) farba (červená) (n = 6) => farba (červená) (n-2) = 6-2 = farba (červená) (4) Takže dve po sebe idúce celé čísla: (4,6) (ii)) farba (červená) (n = -4)
Produkt dvoch po sebe idúcich nepárnych celých čísel je 29 menej ako 8 násobok ich súčtu. Nájdite dve celé čísla. Odpoveď vo forme párových bodov s najnižšou z dvoch celých čísel ako prvý?
(13, 15) alebo (1, 3) Nech x a x + 2 sú nepárne po sebe idúce čísla, potom podľa otázky máme (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 alebo 1 Teraz, PRÍPAD I: x = 13:. x + 2 = 13 + 2 = 15:. Čísla sú (13, 15). PRÍPAD II: x = 1:. x + 2 = 1+ 2 = 3:. Čísla sú (1, 3). Preto, ako sa tu tvoria dva prípady; dvojica čísel môže byť (13, 15) alebo (1, 3).
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n