Čo sú x a y, ak y = x ^ 2 + 6x + 2 a y = -x ^ 2 + 2x + 8?

Čo sú x a y, ak y = x ^ 2 + 6x + 2 a y = -x ^ 2 + 2x + 8?
Anonim

odpoveď:

#(1,9)# a #(-3,-7)#

vysvetlenie:

Otázku interpretujem ako otázku, aké hodnoty x a y uspokojia oba výrazy. V tomto prípade to môžeme povedať pre požadované body

# x ^ 2 + 6x +2 = -x ^ 2 + 2x + 8 #

Presun všetkých položiek doľava nám dáva

# 2x ^ 2 + 4x -6 = 0 #

# (2x -2) (x + 3) = 0 #

teda # X = 1 # alebo # X = -3 #

Nahradenie do jednej z rovníc nám dáva

#y = - (1) ^ 2 + 2 * (1) +8 = 9 #

alebo #y = - (- 3) ^ 2 + 2 * (- 3) + 8 #

#y = -9 -6 +8 = - 7 #

Preto sú priesečníky oboch parabolasov #(1,9)# a (-3, -7) #