odpoveď:
vysvetlenie:
Vzhľadom k tomu, binomial je prevzatý na 6. moc potrebujeme 6. riadok Pascalovho trojuholníka. Toto je:
Toto sú spoluúčasti na podmienkach expanzie, ktoré nám:
Vyhodnotí sa takto:
Ako môžete použiť binomickú sériu na rozšírenie (5 + x) ^ 4?
(5 + x) ^ 4 = 625 + 500x + 150x ^ 2 + 20x ^ 3 + x ^ 4 Rozšírenie binomického radu pre (a + bx) ^ n, ninZZ; n> 0 je dané: (a + bx) ^ n = sum_ (r = 0) ^ n ((n!) / (r! (n-1)!) a ^ (nr) (bx) ^ r) Takže máme: (5 + x) ^ 4 = (4!) / (0! * 4!) 5 ^ 4 + (4!) / (1! * 3!) (5) ^ 3x + (4!) / (2! * 2!) (5) ^ 2x ^ 2 + (4!) / (4! * 1!) (5) x ^ 3 + (4!) / (4! * 0!) X ^ 4 (5 + x) ^ 4 = 5 ^ 4 + 4 (5) ^ 3x + 6 (5) ^ 2x ^ 2 + 4 (5) x ^ 3 + x ^ 4 (5 + x) ^ 4 = 625 + 500x + 150x ^ 2 + 20x ^ 3 + x ^ 4
Ako môžete použiť trojuholník Pascals na rozšírenie (x-3) ^ 5?
X ^ 5 - 15 x ^ 4 + 90 x ^ 3 - 270x ^ 2 +405 x - 243 Potrebujeme riadok, ktorý začína od 1 5 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 (x-3) ^ 5 = x ^ 5 + 5 x ^ 4 (-3) ^ 1 + 10 x ^ 3 (-3) ^ 2 + 10 x ^ 2 (-3) ^ 3 + 5 x ( -3 ^ 4) + 3 ^ 5 = x ^ 5 - 15 x ^ 4 + 90 x ^ 3 - 270x ^ 2 +405 x - 243
Ako môžete použiť binomickú vetu na rozšírenie (x + 1) ^ 4?
X ^ 4 + 4x ^ 3 + 6x ^ 2 + 4x + 1 Dvojčlenná veta hovorí: (a + b) ^ 4 = a ^ 4 + 4a ^ 3b + 6a ^ 2b ^ 2 + 4ab ^ 3 + b ^ 4 tu a = x a b = 1 Dostaneme: (x + 1) ^ 4 = x ^ 4 + 4x ^ 3 (1) + 6x ^ 2 (1) ^ 2 + 4x (1) ^ 3 + (1) ^ 4 (x + 1) ^ 4 = x ^ 4 + 4x ^ 3 + 6x ^ 2 + 4x + 1