odpoveď:
Doména:
Rozsah:
vysvetlenie:
Nech y = polynóm stupňa n
ako
Tu n = 2 a
y = -x ^ 2-14x-52) = - (x + 7) ^ 2-3 <= - 3, udáva sa
Doména je
Pozrite si graf. graf {(- x ^ 2-14x-52-y) (y + 3) ((x + 7) ^ 2 + (y + 3) 2-01) = 0 -20, 0, -10, 0}
Graf zobrazuje parabolu a jej najvyšší bod, vrchol V (-7, -3)
Diskriminačným faktorom kvadratickej rovnice je -5. Ktorá odpoveď popisuje počet a typ riešenia rovnice: 1 komplexné riešenie 2 reálne riešenia 2 komplexné riešenia 1 skutočné riešenie?
Vaša kvadratická rovnica má 2 komplexné riešenia. Diskriminant kvadratickej rovnice nám môže poskytnúť len informácie o rovnici tvaru: y = ax ^ 2 + bx + c alebo parabola. Pretože najvyšší stupeň tohto polynómu je 2, nesmie mať viac ako 2 riešenia. Diskriminačný je jednoducho vec pod symbolom druhej odmocniny (+ -sqrt ("")), ale nie samotný symbol druhej odmocniny. + -sqrt (b ^ 2-4ac) Ak je diskriminačný, b ^ 2-4ac, menší ako nula (tzn. akékoľvek záporné číslo), potom by ste mali záporné znamienko pod symbolom druhej odm
Nech doména f (x) je [-2,3] a rozsah [0,6]. Čo je doména a rozsah f (-x)?
Doména je interval [-3, 2]. Rozsah je interval [0, 6]. Presne ako je to nie je funkcia, pretože jej doména je len číslo -2,3, zatiaľ čo jej rozsah je interval. Ale za predpokladu, že je to len preklep a skutočná doména je interval [-2, 3], je to takto: Nech g (x) = f (-x). Pretože f vyžaduje, aby jeho nezávislá premenná brala hodnoty len v intervale [-2, 3], -x (záporné x) musí byť v rozsahu [-3, 2], čo je doména g. Pretože g získava svoju hodnotu prostredníctvom funkcie f, jej rozsah zostáva rovnaký, bez ohľadu na to, čo používame ako nez
Ak f (x) = 3x ^ 2 a g (x) = (x-9) / (x + 1) a x! = - 1, potom čo by f (g (x)) bolo rovnaké? g (f (x))? f ^ -1 (x)? Čo by bola doména, rozsah a nuly pre f (x)? Čo by bola doména, rozsah a nuly pre g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x v RR}, R_f = {f (x) v RR; f (x)> = 0} D_g = {x v RR; x! = - 1}, R_g = {g (x) v RR; g (x)! = 1}