Ak chcete vypočítať obvod trojuholníka, musíte poznať dĺžku všetkých strán.
Zavoláme malú nohu
To už vieme
Po prvé, môžeme vypočítať
Teraz môžeme počítať
Teraz, keď máme všetky tri strany, môžeme spočítať
Prepona pravého trojuholníka je 39 palcov a dĺžka jednej nohy je 6 palcov dlhšia ako dvojnásobok druhej nohy. Ako zistíte dĺžku každej nohy?
Nohy majú dĺžku 15 a 36 Metóda 1 - Známe trojuholníky Prvých pár pravouhlých trojuholníkov s nepárnou dĺžkou sú: 3, 4, 5, 5, 12, 13 7, 24, 25 Všimnite si, že 39 = 3 * 13, takže bude trojuholník s nasledujúcimi stranami pracovať: 15, 36, 39 tj 3 krát väčší ako trojuholník 5, 12, 13? Dvakrát 15 je 30, plus 6 je 36 - Áno. farba (biela) () Metóda 2 - Pythagorasov vzorec a malá algebra Ak je menšia noha dlhá x, potom väčšia noha má dĺžku 2x + 6 a prepona je: 39 = sqrt (x ^ 2 + (2x + 6) ^ 2) farba (biela) (39) = sqr
Dĺžka základne rovnoramenného trojuholníka je o 4 palce menšia ako dĺžka jednej z dvoch rovnakých strán trojuholníkov. Ak je obvod 32, aké sú dĺžky každej z troch strán trojuholníka?
Strany sú 8, 12 a 12. Môžeme začať vytvorením rovnice, ktorá môže reprezentovať informácie, ktoré máme. Vieme, že celkový obvod je 32 palcov. Každú stranu môžeme reprezentovať zátvorkami. Pretože poznáme iné 2 strany okrem základne sú rovnaké, môžeme to využiť v náš prospech. Naša rovnica vyzerá takto: (x-4) + (x) + (x) = 32. Môžeme to povedať, pretože základňa je o 4 menej ako ostatné dve strany, x. Keď túto rovnicu vyriešime, dostaneme x = 12. Ak to pripojíme pre každú stranu, dostaneme 8, 12
Dĺžka prepony v pravom trojuholníku je 20 centimetrov. Ak je dĺžka jednej nohy 16 centimetrov, aká je dĺžka druhej nohy?
"12 cm" Od "Pythagorova veta" "h" ^ 2 = "a" ^ 2 + "b" ^ 2 kde "h =" Dĺžka strany prepony "a =" Dĺžka jednej nohy "b =" Dĺžka inej nohy noha ("20 cm") ^ 2 = ("16 cm") ^ 2 + "b" ^ 2 "b" ^ 2 = ("20 cm") ^ 2 - ("16 cm") ^ 2 "b" = sqrt (("20 cm") ^ 2 - ("16 cm") ^ 2) "b" = sqrt ("400 cm" ^ 2 - "256 cm" ^ 2) "b" = sqrt ("144 cm" "^ 2)" b = 12 cm "