
odpoveď:
vysvetlenie:
Rovnako ako v prípade
Kartézsky graf funkcie sa však mení. Toto je, ako vždy zvažujeme
Podobne v
ďalej
Existuje však obmedzenie ako v
Nech f (x) = x-1. 1) Skontrolujte, či f (x) nie je ani párne ani nepárne. 2) Môže byť f (x) zapísané ako súčet párnej funkcie a nepárnej funkcie? a) Ak áno, vystavte roztok. Existuje viac riešení? b) Ak nie, preukázať, že to nie je možné.

Nech f (x) = | x -1 | Ak by f bolo párne, potom f (-x) by sa rovnalo f (x) pre všetky x. Ak f bolo nepárne, potom f (-x) by sa rovnalo -f (x) pre všetky x. Všimnite si, že pre x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Pretože 0 nie je rovné 2 alebo -2, f nie je ani párne ani nepárne. F môže byť napísané ako g (x) + h (x), kde g je párne a h je nepárne? Ak by to tak bolo, potom g (x) + h (x) = | x - 1 |. Zavolajte toto vyhlásenie 1. Nahraďte x za -x. g (-x) + h (-x) = | -x - 1 | Pretože g je párne a h je nepárne, máme: g (x) - h (x) = | -x - 1 | Zavolaj
Na určenie, či je nejaká funkcia funkciou, používame vertikálnu čiarovú skúšku, tak prečo používame horizontálnu čiarovú skúšku pre inverznú funkciu, ktorá je v protiklade s testom vertikálnej čiary?

Na určenie, či inverzná funkcia je skutočne funkciou, použijeme len test horizontálnej čiary. Tu je dôvod, prečo: Po prvé, musíte sa pýtať sami seba, čo je inverzná funkcia, je to tam, kde x a y sú prepnuté, alebo funkcia, ktorá je symetrická k pôvodnej funkcii cez čiaru, y = x. Takže áno, použijeme vertikálny riadkový test na zistenie, či je niečo funkciou. Čo je to vertikálna čiara? Je to rovnica x = niektoré číslo, všetky čiary, kde x je rovné určitej konštante, sú zvislé čiary. Preto, definíciou inverznej funkc
Prečo nie je krvná zrazenina v krvných cievach? Krv obsahuje krvné doštičky, ktoré pomáhajú pri zrážaní krvi, keď je na tele telo. Prečo nie je zrazenina, keď je krv v cievach prítomná v normálnom zdravom tele?

Krv sa nezráža v krvných cievach kvôli chemickej látke nazývanej heparín. Heparín je antikoagulant, ktorý neumožňuje zrážanie krvi v cievach