odpoveď:
Vektorová projekcia je
vysvetlenie:
Vektorová projekcia
Bodový produkt je
Modul pružnosti
Z tohto dôvodu
Aká je projekcia (2i -3j + 4k) na (- 5 i + 4 j - 5 k)?
Odpoveď je = -7 / 11 〈-5,4, -5〉 Vektorová projekcia vecb na veca je = (veca.vecb) / ( veca ) ^ 2veca Produkt dot je veca.vecb = 〈2, -3,4〉. 〈- 5,4, -5〉 = (- 10-12-20) = - 42 Modul veky je = 〈-5,4, -5〉 = sqrt (25 + 16 +25) = sqrt66 Vektorová projekcia je = -42 / 66 〈-5,4, -5〉 = -7 / 11 〈-5,4, -5〉
Aká je projekcia (2i + 3j - 7k) na (3i - 4j + 4k)?
Odpoveď je = 34/41 〈3, -4,4〉 Vektorová projekcia vecb na veca je = (veca.vecb) / ( veca ^ 2) veca Produkt dot je veca.vecb = 〈2,3 , -7〉. 〈3, -4,4〉 = (6-12-28) = 34 Modul veky je = veca = 〈3, -4,4〉 = sqrt (9 + 16 + 16) = sqrt41 Vektorová projekcia je = 34/41 〈3, -4,4〉
Aká je projekcia (32i-38j-12k) na (18i -30j -12k)?
Vec c = <24,47i, -40,79j, -16,32k> vec a = <32i, -38j, -12k> vec b = <18i, -30j, -12k> vec a * vec b = 18 * 32 + 38 * 30 + 12 * 12 = vec a * vec b = 576 + 1140 + 144 = 1860 | b | = sqrt (18 ^ 2 + 30 ^ 2 + 12 ^ 2) | b | = sqrt (324 + 900 +144) | b | = sqrt1368 vec c = (vec a * vec b) / (| b | * | b |) * vec b vec c = 1860 / (sqrt 1368 * sqrt 1368) <18i, -30j, - 12k> vec c = 1860/1368 <18i, -30j, -12k> vec c = <(1860 * 18i) / 1368, (-1860 * 30j) / 1368, (- 1860 * 12k) / 1368> vec c = <24,47, -40,79j, -16,32k>