odpoveď:
(1) dĺžku segmentu #bar (AB) # je #17#
(2) Stred #bar (AB) # je #(1,-7 1/2)#
(3) Súradnice bodu # Q # ktorý sa rozdeľuje #bar (AB) # v pomere #2:5# sú #(-5/7,5/7)#
vysvetlenie:
Ak máme dva body #A (x_1, y_1) # a #B (x_2, y_2) #, dĺžka #bar (AB) # vzdialenosť medzi nimi je daná
#sqrt ((x_2-x 1) ^ 2 + (x_2-x 1) ^ 2) #
a súradnice bodu # P # ktorý segment rozdeľuje #bar (AB) # spojením týchto dvoch bodov v pomere #L: m # sú
# ((Lx_2 + mx_1) / (l + m), (+ lx_2 mx_1) / (l + m)) #
a ako stredne rozdelený segment v pomere #1:1#, jeho koordinácia by bola # ((X_2 + x 1) / 2, (x_2 + x 1) / 2) #
Ako máme #A (-3,5) # a # B (5, -10) #
(1) dĺžku segmentu #bar (AB) # je
#sqrt ((5 - (- 3)) ^ 2 + ((- 10), -5) ^ 2) #
= #sqrt (8 ^ 2 + (- 15) ^ 2) = sqrt (65 + 225) = sqrt289 = 17 #
(2) Stred #bar (AB) # je #((5-3)/2,(-10-5)/2)# alebo #(1,-7 1/2)#
(3) Súradnice bodu # Q # ktorý sa rozdeľuje #bar (AB) # v pomere #2:5# sú
# ((2xx5 + 5XX (-3)) / 7, (2xx (-10) + 5xx5) / 7) # alebo #((10-15)/7,(-20+25)/7)#
tj. #(-5/7,5/7)#