Ako nájdete doménu a rozsah y = sqrt (2x + 7)?

Ako nájdete doménu a rozsah y = sqrt (2x + 7)?
Anonim

odpoveď:

Hlavnou hnacou silou je, že nemôžeme vziať odmocninu záporného čísla do systému reálnych čísel.

vysvetlenie:

Takže musíme nájsť najmenšie číslo, ktoré môžeme vziať do druhej odmocniny, ktorá je stále v systéme reálnych čísel, ktorý je samozrejme nula.

Takže musíme vyriešiť rovnicu # 2x + 7 = 0 #

Je to samozrejme #x = -7 / 2 #

Takže to je najmenšia, legálna hodnota x, ktorá je dolnou hranicou vašej domény. Neexistuje žiadna maximálna hodnota x, takže horná hranica vašej domény je kladná nekonečno.

tak #D = - 7/2, + oo) #

Minimálna hodnota pre váš rozsah bude nula, pretože # # Sqrt0 =0

Neexistuje žiadna maximálna hodnota pre váš rozsah, takže # R = 0, + oo) #