odpoveď:
#x = e ^ root (4) (3 log 5) #
vysvetlenie:
Vzhľadom k tomu, že pre #x> 0 rArr x = e ^ (log x) #
a definovanie # x @ y = e ^ (logx logy) #
máme
# x @ x @ x = e ^ (Log (e ^ (Log (2x ^) Logx)) Logx) = ((e ^ (Log ^ 2x)) ^ Logx) ^ Logx #
potom
# ((E ^ (Log ^ 2x)) ^ Logx) ^ Logx = 5 ^ 3 #
teraz #log # na obe strany
#logx log (e ^ (Log ^ 2x)) ^ Logx = log ^ 2x log (e ^ (Log ^ 2x)) = log ^ 4x = 3 log 5 #
potom
#log x = root (4) (3 log 5) # a
#x = e ^ root (4) (3 log 5) #