Zistite hodnotu theta, ak, Cos (theta) / 1-sin (theta) + cos (theta) / 1 + sin (theta) = 4?

Zistite hodnotu theta, ak, Cos (theta) / 1-sin (theta) + cos (theta) / 1 + sin (theta) = 4?
Anonim

odpoveď:

# Theta = pi / 3 # alebo #60^@#

vysvetlenie:

Poriadku. Máme:

# Costheta / (1-sintheta) + costheta / (1 + sintheta) = 4 #

Ignorujme to # RHS # na Teraz.

# Costheta / (1-sintheta) + costheta / (1 + sintheta) #

# (Costheta (1 + sintheta) + costheta (1-sintheta)) / ((1-sintheta) (1 + sintheta)) #

# (Costheta ((1-sintheta) + (1 + sintheta))) / (1-sin ^ 2Theta) #

# (Costheta (1-sintheta + 1 + sintheta)) / (1-sin ^ 2Theta) #

# (2costheta) / (1-sin ^ 2Theta) #

Podľa Pythagorean Identity, # Sin ^ 2theta + cos ^ 2theta = 1 #, takže:

# Cos ^ 2theta = 1-sin ^ 2theta #

Teraz, keď to vieme, môžeme napísať:

# (2costheta) / cos ^ 2theta #

# 2 / costheta = 4 #

# Costheta / 2 = 1/4 #

# Costheta = 1/2 #

# Theta = cos ^ -1 (1/2) #

# Theta = pi / 3 #, kedy # 0 <= theta <= pi #.

V stupňoch, # Theta = 60 ^ @ # kedy # 0 ^ '<= theta <= 180 ^ @ #

odpoveď:

# Rarrcosx = 1/2 #

vysvetlenie:

Vzhľadom k tomu, # Rarrcosx / (1-sinx) + cosx / (1 + sinx) = 4 #

#rarrcosx 1 / (1-sinx) + 1 / (1 + sinx) = 4 #

#rarrcosx (1 + zrušiť (sinx) + 1cancel (-sinx)) / ((1-sinx) * (1 + sinx) = 4 #

#rarr (2cosx) / (1-sin ^ 2x) = 4 #

# Rarrcosx / cos ^ 2x = 2 #

# Rarrcosx = 1/2 #